import sys import numpy as np from scipy.spatial.transform import Rotation as R from .base_controller import BaseController from .arm_state import ArmState from pathlib import Path import time sys.path.append(str(Path(__file__).resolve().parent.parent)) from tools.yaml_operator import read_yaml class PositionController(BaseController): def __init__(self, name, state:ArmState,config_path) -> None: super().__init__(name, state) self.load_config(config_path) self.laset_print_time = 0 def load_config(self, config_path): config_dict = read_yaml(config_path) if self.name != config_dict['name']: raise ValueError(f"Controller name {self.name} does not match config name {config_dict['name']}") self.Kp = np.diag(np.array(config_dict['Kp'])) self.Ki = np.diag(np.array(config_dict['Ki'])) self.Kd = np.diag(np.array(config_dict['Kd'])) self.pose_integral_error = np.zeros(6) def step(self,dt): # print(f"desired position: {self.state.desired_position}, desired orientation: {R.from_quat(self.state.desired_orientation).as_euler('xyz',degrees=False)}") # print(f"current position: {self.state.arm_position}, current orientation: {R.from_quat(self.state.arm_orientation).as_euler('xyz',degrees=False)}") self.state.pose_error[:3] = self.state.arm_position - self.state.desired_position if self.state.desired_orientation.dot(self.state.arm_orientation) < 0: self.state.arm_orientation = -self.state.arm_orientation rot_err_mat = R.from_quat(self.state.arm_orientation).as_matrix() @ R.from_quat(self.state.desired_orientation).as_matrix().T rot_err_rotvex = R.from_matrix(rot_err_mat).as_rotvec(degrees=False) self.state.pose_error[3:] = rot_err_rotvex self.pose_integral_error += self.state.pose_error * dt self.state.arm_desired_acc = - self.Kd @ (self.state.arm_desired_twist - self.state.desired_twist) - self.Kp @ self.state.pose_error - self.Ki @ self.pose_integral_error self.clip_command(self.state.arm_desired_acc,"acc") self.state.arm_desired_twist = self.state.arm_desired_acc * dt + self.state.arm_desired_twist self.clip_command(self.state.arm_desired_twist,"vel") delta_pose = self.state.arm_desired_twist * dt self.clip_command(delta_pose,"pose") delta_ori_mat = R.from_rotvec(delta_pose[3:]).as_matrix() arm_ori_mat = delta_ori_mat @ R.from_quat(self.state.arm_orientation).as_matrix() self.state.arm_orientation_command = R.from_matrix(arm_ori_mat).as_quat() # 归一化四元数 self.state.arm_orientation_command /= np.linalg.norm(self.state.arm_orientation_command) self.state.arm_position_command = self.state.arm_position + delta_pose[:3] # if time.time() - self.laset_print_time > 0.5: # print("---------------positioner-------------------------------------") # print("arm_position:",self.state.arm_position) # print("desired_position:",self.state.desired_position) # print("arm_orientation",R.from_quat(self.state.arm_orientation).as_euler('xyz',degrees=True)) # print("desired_orientation",R.from_quat(self.state.desired_orientation).as_euler('xyz',degrees=True)) # print("arm_position_command",self.state.arm_position_command) # print("arm_orientation_command",R.from_quat(self.state.arm_orientation_command).as_euler('xyz',degrees=True)) # print("delta_pose:",delta_pose) # self.laset_print_time = time.time() # if time.time() - self.last_print_time > 1: # print(self.state.arm_position_command,R.from_quat(self.state.arm_orientation_command).as_euler('xyz',degrees=True)) # self.last_print_time = time.time()