Compare commits

..

7 Commits
main ... LWH

Author SHA1 Message Date
Ziwei.He
b07c0ee2a6 Merge remote-tracking branch 'refs/remotes/origin/LWH' into LWH 2025-05-29 11:48:38 +08:00
Ziwei
aa09db487f 2222 2025-05-29 11:46:58 +08:00
liangweihao
feaccd1410 1111 2025-05-29 09:38:29 +08:00
liangweihao
0a18dec9a0 合并 2025-05-28 15:35:07 +08:00
liangweihao
f5a3aaaab0 Merge branch 'main' of https://git.robotstorm.tech/DevelopmentTeam/MassageRobot_Dobot into LWH
合并
2025-05-28 09:52:25 +08:00
liangweihao
4e210c38fa 获取标定位姿 2025-05-28 09:51:48 +08:00
liangweihao
66ddb21f80 视觉标定 2025-05-27 16:48:55 +08:00
16 changed files with 245 additions and 386 deletions

26
.gitignore vendored
View File

@ -1,26 +0,0 @@
# 忽略 Python 缓存文件和编译文件
*.pyc
__pycache__/
# 忽略虚拟环境
venv/
.env/
.venv/
env/
# 忽略日志、临时文件
*.log
*.tmp
# 忽略 Jupyter 缓存
.ipynb_checkpoints/
# 忽略 VS Code 或 PyCharm 等 IDE 配置
.vscode/
.idea/
# 忽略构建目录
build/
dist/
*.egg-info/
.eggs/

View File

@ -108,20 +108,12 @@ class MassageRobot:
self.vtxdb = VTXClient()
# 当前执行的函数
self.current_function = None
self.arm_state = ArmState()
self.arm_config = read_yaml(arm_config_path)
# arm 实例化时机械臂类内部进行通讯连接
# 初始化坐标系 TOOL=0 BASE=1
self.arm = dobot_nova5(arm_ip = self.arm_config['arm_ip'])
self.arm.start()
self.arm.chooseRightFrame()
self.arm.init()
self.thermotherapy = None
self.shockwave = None
self.stone = None
@ -135,16 +127,25 @@ class MassageRobot:
# 控制器,初始为导纳控制
self.controller_manager = ControllerManager(self.arm_state)
self.controller_manager.add_controller(AdmittanceController,'admittance',self.arm_config['controller'][0])
# self.controller_manager.add_controller(HybridController,'hybrid',self.arm_config['controller'][1])
self.controller_manager.add_controller(PositionController,'position',self.arm_config['controller'][1])
# self.controller_manager.add_controller(AdmitHybridController,'admithybrid',self.arm_config['controller'][3])
# self.controller_manager.add_controller(HybridPidController,'hybridPid',self.arm_config['controller'][4])
# self.controller_manager.add_controller(HybridAdmitController,'hybridAdmit',self.arm_config['controller'][5])
# self.controller_manager.add_controller(PositionerSensorController,'positionerSensor',self.arm_config['controller'][6])
# self.controller_manager.add_controller(AdmittanceZController,'admittanceZ',self.arm_config['controller'][7])
self.controller_manager.add_controller(HybridController,'hybrid',self.arm_config['controller'][1])
self.controller_manager.add_controller(PositionController,'position',self.arm_config['controller'][2])
self.controller_manager.add_controller(AdmitHybridController,'admithybrid',self.arm_config['controller'][3])
self.controller_manager.add_controller(HybridPidController,'hybridPid',self.arm_config['controller'][4])
self.controller_manager.add_controller(HybridAdmitController,'hybridAdmit',self.arm_config['controller'][5])
self.controller_manager.add_controller(PositionerSensorController,'positionerSensor',self.arm_config['controller'][6])
self.controller_manager.add_controller(AdmittanceZController,'admittanceZ',self.arm_config['controller'][7])
self.controller_manager.switch_controller('admittance')
# 按摩头参数暂时使用本地数据
massage_head_dir = self.arm_config['massage_head_dir']
all_items = os.listdir(massage_head_dir)
head_config_files = [f for f in all_items if os.path.isfile(os.path.join(massage_head_dir, f))]
self.playload_dict = {}
for file in head_config_files:
file_address = massage_head_dir + '/' + file
play_load = read_yaml(file_address)
self.playload_dict[play_load['name']] = play_load
self.current_head = 'none'
# 读取数据
self.gravity_base = None
@ -153,7 +154,7 @@ class MassageRobot:
self.tool_position = None
self.mass_center_position = None
self.s_tf_matrix_t = None
arm_orientation_set0 = np.array([-180,-30,0])
arm_orientation_set0 = np.array([-180,0,-90])
self.b_rotation_s_set0 = R.from_euler('xyz',arm_orientation_set0,degrees=True).as_matrix()
# 频率数据赋值
@ -176,30 +177,15 @@ class MassageRobot:
# 按摩调整
self.adjust_wrench_envent = threading.Event()
self.adjust_wrench_envent.clear() # 调整初始化为False
self.is_execute = False
self.pos_increment = np.zeros(3,dtype=np.float64)
self.adjust_wrench = np.zeros(6,dtype=np.float64)
self.skip_pos = np.zeros(6,dtype=np.float64)
# 按摩头参数暂时使用本地数据
massage_head_dir = self.arm_config['massage_head_dir']
all_items = os.listdir(massage_head_dir)
head_config_files = [f for f in all_items if os.path.isfile(os.path.join(massage_head_dir, f))]
self.playload_dict = {}
for file in head_config_files:
file_address = massage_head_dir + '/' + file
play_load = read_yaml(file_address)
self.playload_dict[play_load['name']] = play_load
# self.playload_dict = self.vtxdb.get("robot_config", "massage_head")
# print(self.playload_dict)
self.current_head = 'none'
self.is_waitting = False
self.last_print_time = 0
self.last_record_time = 0
self.last_command_time = 0
self.move_to_point_count = 0
self.width_default = 5
# 卡尔曼滤波相关初始化
self.x_base = np.zeros(6)
self.P_base = np.eye(6)
@ -217,16 +203,7 @@ class MassageRobot:
# 传感器故障计数器
self.sensor_fail_count = 0
# 机械臂初始化,适配中间层
# 读取数据
self.gravity_base = None
self.force_zero = None
self.torque_zero = None
self.tool_position = None
self.mass_center_position = None
self.s_tf_matrix_t = None
arm_orientation_set0 = np.array([-180,0,-90])
self.b_rotation_s_set0 = R.from_euler('xyz',arm_orientation_set0,degrees=True).as_matrix()
self.arm.init()
# REF TRAJ
self.xr = []
@ -238,36 +215,6 @@ class MassageRobot:
self.last_time = -1
self.cur_time = -1
# 预测步骤
def kalman_predict(self,x, P, Q):
# 预测状态(这里假设状态不变)
x_predict = x
# 预测误差协方差
P_predict = P + Q
return x_predict, P_predict
# 更新步骤
def kalman_update(self,x_predict, P_predict, z, R):
# 卡尔曼增益
# K = P_predict @ np.linalg.inv(P_predict + R)
S = P_predict + R
s = np.diag(S) # shape (6,)
p_diag = np.diag(P_predict)
K_diag = np.zeros_like(s)
nonzero_mask = s != 0
K_diag[nonzero_mask] = p_diag[nonzero_mask] / s[nonzero_mask]
K = np.diag(K_diag)
# 更新状态
x_update = x_predict + K @ (z - x_predict)
# 更新误差协方差
P_update = (np.eye(len(K)) - K) @ P_predict
return x_update, P_update
def init_hardwares(self,ready_pose):
self.ready_pose = np.array(ready_pose)
self.switch_payload(self.current_head)
print(self.arm.get_arm_position())
time.sleep(0.5)
def sensor_set_zero(self):
self.arm_position_set0,self.arm_orientation_set0 = self.arm.get_arm_position()
@ -376,7 +323,30 @@ class MassageRobot:
return -1
return 0
# 预测步骤
def kalman_predict(self,x, P, Q):
# 预测状态(这里假设状态不变)
x_predict = x
# 预测误差协方差
P_predict = P + Q
return x_predict, P_predict
# 更新步骤
def kalman_update(self,x_predict, P_predict, z, R):
# 卡尔曼增益
# K = P_predict @ np.linalg.inv(P_predict + R)
S = P_predict + R
s = np.diag(S) # shape (6,)
p_diag = np.diag(P_predict)
K_diag = np.zeros_like(s)
nonzero_mask = s != 0
K_diag[nonzero_mask] = p_diag[nonzero_mask] / s[nonzero_mask]
K = np.diag(K_diag)
# 更新状态
x_update = x_predict + K @ (z - x_predict)
# 更新误差协方差
P_update = (np.eye(len(K)) - K) @ P_predict
return x_update, P_update
def update_wrench(self):
# 当前的机械臂到末端转换 (实时)
@ -414,29 +384,6 @@ class MassageRobot:
self.arm_state.last_external_wrench_tcp = self.arm_state.external_wrench_tcp
return 0
def switch_payload(self,name):
if name in self.playload_dict:
self.stop()
self.current_head = name
compensation_config = self.playload_dict[self.current_head]
# 读取数据
self.gravity_base = np.array(compensation_config['gravity_base'])
self.force_zero = np.array(compensation_config['force_zero'])
self.torque_zero = np.array(compensation_config['torque_zero'])
self.tool_position = np.array(compensation_config['tcp_offset'])
self.mass_center_position = np.array(compensation_config['mass_center_position'])
self.s_tf_matrix_t = self.get_tf_matrix(self.tool_position[:3], R.from_euler('xyz',self.tool_position[3:],degrees=False).as_quat())
tcp_offset = self.playload_dict[name]["tcp_offset"]
tcp_offset_str = "{" + ",".join(map(str, tcp_offset)) + "}"
print("tcp_offset_str",tcp_offset_str)
self.arm.setEndEffector(i=9,tool_i=tcp_offset_str)
self.arm.chooseEndEffector(i=9)
print(self.arm.get_arm_position())
self.logger.log_info(f"切换到{name}按摩头")
# ####################### 位姿伺服 ##########################
def arm_measure_loop(self):
@ -553,9 +500,8 @@ class MassageRobot:
command_pose[:3],
command_pose[3:]
)
# pose_processed = command_pose
print(f"pose_processed:{pose_processed}")
print(self.arm.feedbackData.robotMode)
# print(f"pose_processed:{pose_processed}")
tcp_command = (
f"ServoP({pose_processed[0]:.3f},{pose_processed[1]:.3f},"
f"{pose_processed[2]:.3f},{pose_processed[3]:.3f},"
@ -570,7 +516,6 @@ class MassageRobot:
time.sleep(sleep_duration)
print(f"real sleep:{time.time()-b2}")
self.arm.dashboard.socket_dobot.sendall(tcp_command)
print("currentCommandID",self.arm.feedbackData.robotCurrentCommandID)
if self.arm.feedbackData.robotMode == 10: # 10 当前工程暂停
print("机械臂为暂停状态")
res = self.arm.dashboard.Continue()
@ -590,7 +535,7 @@ class MassageRobot:
# 线程
self.exit_event.clear()
self.arm_measure_thread = threading.Thread(target=self.arm_measure_loop)
self.arm_control_thread = threading.Thread(target=self.arm_command_loop)
self.arm_control_thread = threading.Thread(target=self.arm_command_loop_traj)
# 线程启动
self.arm_measure_thread.start() ## 测量线程
position,quat_rot = self.arm.get_arm_position()
@ -639,8 +584,37 @@ class MassageRobot:
self.arm.stop_motion()
self.logger.log_info("MassageRobot停止")
def init_hardwares(self,ready_pose):
self.ready_pose = np.array(ready_pose)
self.switch_payload(self.current_head)
print(self.arm.get_arm_position())
time.sleep(0.5)
def switch_payload(self,name):
if name in self.playload_dict:
self.stop()
self.current_head = name
compensation_config = self.playload_dict[self.current_head]
# 读取数据
self.gravity_base = np.array(compensation_config['gravity_base'])
self.force_zero = np.array(compensation_config['force_zero'])
self.torque_zero = np.array(compensation_config['torque_zero'])
self.tool_position = np.array(compensation_config['tcp_offset'])
self.mass_center_position = np.array(compensation_config['mass_center_position'])
self.s_tf_matrix_t = self.get_tf_matrix(self.tool_position[:3], R.from_euler('xyz',self.tool_position[3:],degrees=False).as_quat())
tcp_offset = self.playload_dict[name]["tcp_offset"]
tcp_offset_str = "{" + ",".join(map(str, tcp_offset)) + "}"
print("tcp_offset_str",tcp_offset_str)
self.arm.setEndEffector(i=9,tool_i=tcp_offset_str)
self.arm.chooseEndEffector(i=9)
print(self.arm.get_arm_position())
self.logger.log_info(f"切换到{name}按摩头")
self.controller_manager.switch_controller('position')
else:
self.logger.log_error(f"未找到{name}按摩头")
def log_thread(self):
while True:
@ -1581,35 +1555,35 @@ class MassageRobot:
if __name__ == "__main__":
# waypoints = [
# {"time": 0.0, "position": [0.25, -0.135, 0.3443], "velocity": [0, 0, 0],
# "acceleration": [0, 0, 0],
# "orientation": R.from_euler("xyz", [0, 0, 0], degrees=True).as_quat()},
# {"time": 5.0, "position": [0.30, -0.135, 0.3043], "velocity": [0, 0, 0],
# "acceleration": [0, 0, 0],
# "orientation": R.from_euler("xyz", [0, 30, 30], degrees=True).as_quat()},
# ] ## 单位 m deg
# myInterpolate = TrajectoryInterpolator(waypoints)
# ts = np.linspace(0,5,100)
robot = MassageRobot(arm_config_path="/home/jsfb/jsfb_ws/MassageRobot_Dobot/Massage/MassageControl/config/robot_config.yaml")
# xr_list, vr_list, ar_list = [], [], []
# for t in ts:
# xr, vr, ar = myInterpolate.interpolate(t)
# xr_list.append(xr)
# vr_list.append(vr)
# ar_list.append(ar)
# xr_array = np.array(xr_list)
# vr_array = np.array(vr_list)
# ar_array = np.array(ar_list)
waypoints = [
{"time": 0.0, "position": [0.25, -0.135, 0.3443], "velocity": [0, 0, 0],
"acceleration": [0, 0, 0],
"orientation": R.from_euler("xyz", [0, 0, 0], degrees=True).as_quat()},
{"time": 5.0, "position": [0.30, -0.135, 0.3043], "velocity": [0, 0, 0],
"acceleration": [0, 0, 0],
"orientation": R.from_euler("xyz", [0, 30, 30], degrees=True).as_quat()},
] ## 单位 m deg
myInterpolate = TrajectoryInterpolator(waypoints)
ts = np.linspace(0,5,100)
robot = MassageRobot(arm_config_path="/home/jsfb/jsfb/MassageRobot_Dobot/Massage/MassageControl/config/robot_config.yaml")
xr_list, vr_list, ar_list = [], [], []
for t in ts:
xr, vr, ar = myInterpolate.interpolate(t)
xr_list.append(xr)
vr_list.append(vr)
ar_list.append(ar)
xr_array = np.array(xr_list)
vr_array = np.array(vr_list)
ar_array = np.array(ar_list)
# robot.xr = xr_array
# robot.vr = vr_array
# robot.ar = ar_array
# robot.ts = ts
# robot.dt = ts[1] - ts[0]
robot.xr = xr_array
robot.vr = vr_array
robot.ar = ar_array
robot.ts = ts
robot.dt = ts[1] - ts[0]
ready_pose = [204.3467,-134.9880,455.3604,-180.0000,-30.0000,0.0042]
ready_pose = [250.0, -135.0, 344.3392, -180.0, 0.0, -90.0]
robot.current_head = 'finger_head'
robot.force_sensor.disable_active_transmission()
@ -1630,7 +1604,7 @@ if __name__ == "__main__":
atexit.register(robot.force_sensor.disconnect)
robot.arm_state.desired_wrench = np.array([0,0,-1,0,0,0])
robot.arm_state.desired_wrench = np.array([0,0,-0.5,0,0,0])
try:
robot_thread = threading.Thread(target=robot.start)
robot_thread.start()

View File

@ -10,8 +10,6 @@ mass_rot: [0.11, 0.11, 0.11]
# stiff_rot: [7, 7, 7]
stiff_tran: [270, 270, 270]
stiff_rot: [11, 11, 11]
# stiff_tran: [0, 0, 0]
# stiff_rot: [11, 11, 11]
# stiff_tran: [100, 100, 100]
# stiff_rot: [1, 1, 1]
# D

View File

@ -1,124 +0,0 @@
import os
import sys
import cv2
import threading
import numpy as np
import time
current_file_path = os.path.abspath(__file__)
dobot_nova5_path = os.path.dirname(os.path.dirname(current_file_path))
sys.path.append(dobot_nova5_path)
from hardware.dobot_nova5 import dobot_nova5
from hardware.remote_cam import ToolCamera
class Getpose:
def __init__(self):
self.running = True
self.arm = dobot_nova5()
self.arm.start()
self.arm.init()
self.cam = ToolCamera(host='127.0.0.1')
self.cam.start()
time.sleep(2)
self.pose_data = []
self.image_data = []
# self.arm.start_drag()
self.rgb = None
def test_show(self):
self.rgb, self.depth, intrinsics = self.cam.get_latest_frame()
if self.rgb is not None:
cv2.imshow("Video Feed", self.rgb)
cv2.waitKey(1000)
def add_data(self):
angle = self.arm.getAngel()
self.pose_data.append(angle)
print(f"Current angle: {angle}")
def save_data(self):
if self.pose_data:
data = np.array(self.pose_data)
np.savetxt('pose.txt', data, fmt='%.5f')
if __name__ == "__main__":
save_directory = '/home/jsfb/jsfb_ws/global_config/captured_images'
if not os.path.exists(save_directory):
os.makedirs(save_directory)
myTest = Getpose()
myTest.arm.start_drag()
time.sleep(0.5)
try:
count = 1
i = 1
while True:
# 读取摄像头的帧
r, d, intrinsics = myTest.cam.get_latest_frame()
# ret, frame = cam.read()
frame = r
# if not ret:
# print("Error: Could not read frame from video device.")
# break
# 显示摄像头的帧
cv2.imshow('found', frame)
# 等待按键事件
key = cv2.waitKey(1) & 0xFF
# if key == ord('r'):
# pose = increase_dof(poselist[index])
# index+=1
# code = cp.arm.move_joint(pose, 4,wait=True)
# if code == -1:
# print("运动到拍照位置失败")
# else:
# 按下's'键保存照片
if key == ord('s'):
img_path = f'photo{i}'
if not os.path.exists(os.path.join(save_directory, img_path)):
os.makedirs(os.path.join(save_directory, img_path))
filename = os.path.join(save_directory, f'{img_path}/rgb_image.png')
cv2.imwrite(filename, frame) # 保存照片
filename1 = os.path.join(save_directory, f'{img_path}/depth_image.png')
cv2.imwrite(filename1, d) # 保存照片
angle = myTest.arm.Get_feedInfo_angle()
print("angle = ",angle)
filename2 = os.path.join(save_directory, f'{img_path}/angle.txt')
np.savetxt(filename2, angle.shape(-1,6),delimiter=',')
print(f'Saved {filename}')
# pose = increase_dof(poselist[index])
# index+=1
# code = cp.arm.move_joint(poselist[index], 4,wait=True)
# if code == -1:
# print("运动到拍照位置失败")
count += 1 # 增加照片计数
i += 1
# 按下'q'键退出循环
elif key == ord('q'):
break
except KeyboardInterrupt:
# 处理Ctrl+C中断
print("\nCamera session ended by user.")
finally:
# 释放资源
myTest.arm.stop_drag()
time.sleep(0.5)
myTest.arm.disableRobot()
myTest.cam.stop()
cv2.destroyAllWindows()
# 总结拍摄的照片
print(f'Total number of images captured: {count}')

View File

@ -13,7 +13,6 @@ import threading
from time import sleep,time
import re
from tools.log import CustomLogger
# from tools.log
import copy
import numpy as np
from scipy.spatial.transform import Rotation as R
@ -95,7 +94,6 @@ class dobot_nova5:
self.feedbackData.QActual = feedInfo['QActual'][0]
self.feedbackData.ActualQuaternion = feedInfo['ActualQuaternion'][0]
self.feedbackData.ToolVectorActual = feedInfo['ToolVectorActual'][0]
self.feedbackData.QDActual = feedInfo['QDActual'][0]
# 自定义添加所需反馈数据
'''
self.feedData.DigitalOutputs = int(feedInfo['DigitalOutputs'][0])
@ -108,6 +106,12 @@ class dobot_nova5:
def start(self):
self.dashboard = DobotApiDashboard(self.ip,self.dashboardPort)
self.feedFour = DobotApiFeedBack(self.ip,self.feedFourPort)
self.dashboard.EmergencyStop(mode=0) # 松开急停
self.clearError() # 清除报警
if self.parseResultId(self.dashboard.EnableRobot())[0] != 0:
print("使能失败:检查29999端口是否被占用")
return
print("机械臂使能成功")
# 状态反馈线程
feedback_thread = threading.Thread(
@ -115,19 +119,6 @@ class dobot_nova5:
)
feedback_thread.daemon = True
feedback_thread.start()
self.dashboard.RequestControl()
self.dashboard.EmergencyStop(mode=0) # 松开急停
self.clearError() # 清除报警
# 关闭碰撞检测
self.dashboard.SetCollisionLevel(level=1)
# lower the velocity
self.dashboard.SpeedFactor(50)
if self.parseResultId(self.dashboard.EnableRobot())[0] != 0:
print("使能失败:检查29999端口是否被占用")
return
print("机械臂使能成功")
def RunPoint_P_inPose(self,poses_list):
'''
@ -740,13 +731,11 @@ class dobot_nova5:
self.last_input_command = None
self.tcp_offset = None
self.init_J = [-45.0009079,55.5785141,-120.68821716,5.11103201,90.00195312,-90.00085449]
self.init_P = [654.3467,-134.9880,305.3604,-180.0000,-30.0000,0.0042]
self.filter_matirx = np.zeros((1,7)) # 位姿伺服用
self.filter_matrix = np.zeros((1,6)) # 角度伺服用
sleep(1)
self.is_standby = False
# code = self.RunPoint_P_inJoint(self.init_J)
code = self.RunPoint_P_inPose(self.init_P)
code = self.RunPoint_P_inJoint(self.init_J)
if code == 0:
print("机械臂初始化成功且到达初始位置")
else:
@ -862,38 +851,20 @@ class dobot_nova5:
return -1, None
def chooseRightFrame(self):
self.chooseBaseFrame(i=1)
# self.chooseEndEffector(i=0)
return
if __name__ == "__main__":
# sleep(5)
dobot = dobot_nova5("192.168.5.1")
dobot.start()
# posJ_home = [-45,87,-147,0,90,-90]
# posJ_ready = [-45,55.5785,-120.6882,5.111,90,-90]
# dobot.RunPoint_P_inJoint(posJ_ready)
posJ = [0,30,-120,0,90,0]
pos_end=[]
dobot.RunPoint_P_inJoint(posJ)
sleep(1)
dobot.setEndEffector(i=9,tool_i="{0.0,0.0,154.071,0.0,0.0,0.0}")
dobot.chooseEndEffector(i=9)
print("Arm pose:",dobot.getPose())
# # sleep(1)
dobot.chooseRightFrame()
# print("Arm pose1:",dobot.getPose())
# # print("Arm pose:",dobot.getPose(user=1,tool=0))
dobot.setEndEffector(i=8,tool_i="{0.0,0.0,154.071,0.0,0.0,0.0}")
dobot.chooseEndEffector(i=8)
print("Arm pose2:",dobot.getPose(user=1,tool=8))
# dobot.RunPoint_P_inPose([300, -135, 224.34, -180, 0, -90])
# print(dobot.get_arm_position())
dobot.RunPoint_L_inPose([179.087702,-136.993776,425.209977,179.418397,-28.9718402,0.06])
# cur_pose = dobot.getPose(user=1,tool=8)
# cur_pose[0] += 30
# target_pose = cur_pose
# print("target",target_pose)
# dobot.RunPoint_P_inPose(target_pose)
# dobot.ServoPose(dobot.getPose(user=1,tool=8))
# print("new ready joint",dobot.feedbackData.QActual)
# # dobot.start_drag()
# dobot.stop_drag()
# dobot.start_drag()
dobot.disableRobot()

View File

@ -1,11 +1,9 @@
import struct
import serial
import serial.tools.list_ports
import numpy as np
import atexit
import threading
import time
import yaml
import subprocess
import psutil
@ -16,8 +14,7 @@ sys.path.append(os.path.abspath(os.path.join(os.getcwd(), "Massage/MassageContro
class XjcSensor:
def __init__(self, port=None, baudrate=115200, rate=250):
# self.port = '/dev/ttyUSB0'
self.port = '/dev/ttyS0'
self.port = port
self.baudrate = baudrate
self.rate = rate

View File

@ -41,16 +41,12 @@ class Calibration:
self.size = None
self.intrinsics_mtx = None
self.disorder = None
time.sleep(2)
rgb_image, depth_image, camera_intrinsics = self.cam.get_latest_frame()
self.save_directory = '/home/jsfb/jsfb_ws/global_config/captured_images'
if rgb_image is None :
print(f'===============相机连接失败请检查并重试==============')
else:
print(f'===============相机连接成功==============')
self.size = rgb_image.shape[:2]
print(f'===============相机连接成功============== ',self.size)
self.intrinsics = camera_intrinsics
self.arm = dobot_nova5("192.168.5.1")
@ -66,7 +62,7 @@ class Calibration:
def collect_data(self):
#移动到初始位置
pose = [-45.0009079,55.5785141,-120.68821716,5.11103201,-90.00195312,-90.00085449]
pose = [0,30,-120,0,90,0]
code = self.arm.RunPoint_P_inJoint(pose)
if code == -1:
print("运动到拍照位置失败")
@ -74,21 +70,16 @@ class Calibration:
self.check_corners()
#运动到下一个位置
# 目前只设计了44条轨迹
for i in range (0,18):
for i in range (0,45):
next_pose = self.get_next_pose_ugly(i)
code=self.arm.RunPoint_P_inJoint(next_pose)
time.sleep(0.5)
self.arm.RunPoint_P_inJoint(next_pose)
if code == -1:
print("运动到拍照位置失败")
else:
self.check_corners()
time.sleep(0.5)
def check_corners(self):
rgb, depth, intrinsics = self.cam.get_latest_frame()
# img_path = f'photo{i}'
# filename = os.path.join(self.save_directory, f'{img_path}/rgb_image.png')
# rgb=cv2.imread(filename)
gray = cv2.cvtColor(rgb, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, self.board_size, None)
if ret:
@ -126,7 +117,7 @@ class Calibration:
def get_pose_homomat(self):
arm_position,arm_orientation = self.arm.get_arm_position()
rotation_matrix = R.from_quat(arm_orientation).as_matrix()
translation_vector = arm_position
translation_vector = arm_position.reshape(3, 1)
homo_mat = np.eye(4) # 创建 4x4 单位矩阵
homo_mat[:3, :3] = rotation_matrix
homo_mat[:3, 3] = translation_vector
@ -193,24 +184,52 @@ class Calibration:
return None
def get_next_pose_ugly(self,index):
poselist =[
[-4.513801574707031250e+01,5.518265151977539062e+01,-1.237858963012695312e+02,9.085088729858398438e+00,-9.337700653076171875e+01,-9.000016784667968750e+01],
[-4.594435882568359375e+01,3.636156082153320312e+01,-1.064173660278320312e+02,-2.125140428543090820e+00,-9.337675476074218750e+01,-9.000016784667968750e+01],
[-4.595432662963867188e+01,1.059147930145263672e+01,-8.284246063232421875e+01,-1.484527587890625000e+01,-9.337491607666015625e+01,-9.000013732910156250e+01],
[-4.638331604003906250e+01,-6.824899196624755859e+00,-6.758448791503906250e+01,-2.286166954040527344e+01,-9.337348937988281250e+01,-9.000016784667968750e+01],
[-4.636801910400390625e+01,-1.807893753051757812e+01,-6.532709503173828125e+01,-2.261142921447753906e+01,-9.336659240722656250e+01,-9.000010681152343750e+01],
[-4.637482833862304688e+01,-4.540402412414550781e+00,-1.098018112182617188e+02,3.086268234252929688e+01,-9.305430603027343750e+01,-9.000022125244140625e+01],
[-4.640084075927734375e+01,8.068140029907226562e+00,-1.362033843994140625e+02,6.259086990356445312e+01,-9.334789276123046875e+01,-9.000019073486328125e+01],
[-4.640056610107421875e+01,8.061657905578613281e+00,-1.511797027587890625e+02,8.927394104003906250e+01,-9.331819915771484375e+01,-9.000019073486328125e+01],
[-4.638466262817382812e+01,3.287191867828369141e+00,-1.566032409667968750e+02,1.035896453857421875e+02,-9.330465698242187500e+01,-9.000022125244140625e+01],
[-3.178509473800659180e+00,6.977911472320556641e+00,-1.417592010498046875e+02,6.005132293701171875e+01,-1.280102996826171875e+02,-9.000010681152343750e+01],
[-1.424913024902343750e+01,-2.980865538120269775e-01,-1.193396759033203125e+02,3.752756500244140625e+01,-1.278784713745117188e+02,-8.999975585937500000e+01],
[-2.393187522888183594e+01,-2.973175048828125000e-01,-1.121088027954101562e+02,3.928178024291992188e+01,-1.183067703247070312e+02,-8.999983215332031250e+01],
[-3.699544525146484375e+01,-2.981689572334289551e-01,-1.078408889770507812e+02,3.178039932250976562e+01,-1.024006271362304688e+02,-8.999983215332031250e+01],
[-6.734904479980468750e+01,-4.368630886077880859e+00,-1.035898971557617188e+02,2.342595481872558594e+01,-7.085527801513671875e+01,-8.999980926513671875e+01],
[-8.632910919189453125e+01,-1.039798259735107422e+01,-1.038105545043945312e+02,2.330961036682128906e+01,-5.476583099365234375e+01,-8.999980926513671875e+01],
[-8.156823730468750000e+01,5.878097534179687500e+00,-1.439221954345703125e+02,6.846669006347656250e+01,-4.482905197143554688e+01,-8.999922943115234375e+01],
[-8.601764678955078125e+01,3.570293045043945312e+01,-1.308228912353515625e+02,2.318510818481445312e+01,-5.378013610839843750e+01,-8.999922943115234375e+01],
[-7.132132053375244141e+00,3.722338104248046875e+01,-1.065378265380859375e+02,-3.337371826171875000e+00,-1.185582199096679688e+02,-8.999931335449218750e+01]
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.0744246875277093, -1.5639895427121187, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.1267845650875392, -1.5116296651522887, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.1791444426473692, -1.4592697875924587, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.0744246875277093, -1.5639895427121187, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.0220648099678793, -1.5116296651522887, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 0.9697049324080494, -1.4592697875924587, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 0.9173450548482196, -1.4069099100326288, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.0744246875277093, -1.5639895427121187, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.1267845650875392, -1.6163494202719486, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.1791444426473692, -1.6687092978317786, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.2315043202071991, -1.7210691753916085, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.0744246875277093, -1.5639895427121187, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.109331272567596, -1.4941763726323454, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.1442378576074825, -1.424363202552572, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.1791444426473692, -1.3545500324727988, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.2140510276872558, -1.2847368623930255, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.0744246875277093, -1.5639895427121187, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.109331272567596, -1.633802712791892, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.1442378576074825, -1.7036158828716652, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.0744246875277093, -1.5639895427121187, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.0395181024878226, -1.4941763726323454, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.004611517447936, -1.424363202552572, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 0.9697049324080493, -1.3545500324727988, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 0.9347983473681627, -1.2847368623930255, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.0744246875277093, -1.5639895427121187, 0.0],
[1.5707963267948966, 0.06510078109938851, 2.16996785900455, 1.0395181024878226, -1.4941763726323454, 0.0],
[1.5707963267948966, 0.05637413483941686, 2.16996785900455, 1.004611517447936, -1.424363202552572, 0.0],
[1.5707963267948966, 0.047647488579445216, 2.16996785900455, 0.9697049324080493, -1.3545500324727988, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.0744246875277093, -1.5639895427121187, 0.0],
[1.562069680534925, 0.07382742735936015, 2.16996785900455, 1.0395181024878226, -1.4941763726323454, 0.0],
[1.5533430342749535, 0.07382742735936015, 2.16996785900455, 1.004611517447936, -1.424363202552572, 0.0],
[1.544616388014982, 0.07382742735936015, 2.16996785900455, 0.9697049324080493, -1.3545500324727988, 0.0],
[1.5358897417550104, 0.07382742735936015, 2.16996785900455, 0.9347983473681627, -1.2847368623930255, 0.0],
[1.5271630954950388, 0.07382742735936015, 2.16996785900455, 0.8998917623282761, -1.2149236923132523, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.0744246875277093, -1.5639895427121187, 0.0],
[1.579522973054868, 0.07382742735936015, 2.16996785900455, 1.109331272567596, -1.5988961277520053, 0.0],
[1.5882496193148397, 0.07382742735936015, 2.16996785900455, 1.1442378576074825, -1.633802712791892, 0.0],
[1.5969762655748112, 0.07382742735936015, 2.16996785900455, 1.1791444426473692, -1.6687092978317786, 0.0],
[1.6057029118347828, 0.07382742735936015, 2.16996785900455, 1.2140510276872558, -1.7036158828716652, 0.0],
[1.6144295580947543, 0.07382742735936015, 2.16996785900455, 1.2489576127271425, -1.7385224679115518, 0.0],
[1.5707963267948966, 0.07382742735936015, 2.16996785900455, 1.0744246875277093, -1.5639895427121187, 0.0],
[1.579522973054868, 0.07382742735936015, 2.16996785900455, 1.1267845650875392, -1.581442835232062, 0.0],
[1.5882496193148397, 0.07382742735936015, 2.16996785900455, 1.1791444426473692, -1.5988961277520053, 0.0],
[1.5969762655748112, 0.07382742735936015, 2.16996785900455, 1.2315043202071991, -1.6163494202719486, 0.0],
[1.6057029118347828, 0.07382742735936015, 2.16996785900455, 1.283864197767029, -1.633802712791892, 0.0],
[1.6144295580947543, 0.07382742735936015, 2.16996785900455, 1.336224075326859, -1.6512560053118353, 0.0]
]
return poselist[index]
@ -221,7 +240,7 @@ if __name__ == '__main__':
# 标定板的width 对应的角点的个数 6
# 标定板的height 对应的角点的个数 3
calibration_board_size = [6,3]
calibration_board_square_size = 0.03 #unit - meter
calibration_board_square_size = 0.027 #unit - meter
systemPath = "/home/jsfb/Documents/"
now = datetime.now()
@ -231,22 +250,10 @@ if __name__ == '__main__':
os.makedirs(systemPath, exist_ok=True)
calib = Calibration(calibration_board_size,calibration_board_square_size,systemPath)
time.sleep(0.5)
calib.arm.chooseBaseFrame(i=1)
calib.arm.chooseEndEffector(i=0)
time.sleep(0.5)
calib.collect_data()
print("=================数据采集完成===================")
R, t,intrin = calib.calibrate()
print("旋转矩阵:")
print(R)
print("平移向量:")
print(t)
print(f"内参: {intrin}")
time.sleep(0.5)
calib.cam.stop()
time.sleep(0.5)
print('camera stopped')

View File

@ -0,0 +1,69 @@
import os
import sys
current_file_path = os.path.abspath(__file__)
dobot_nova5_path = os.path.dirname(os.path.dirname(current_file_path))
print(dobot_nova5_path)
sys.path.append(dobot_nova5_path)
from hardware.dobot_nova5 import dobot_nova5
import cv2
from hardware.remote_cam import ToolCamera
import threading
import numpy as np
import time
class Getpose:
def __init__(self):
self.arm = dobot_nova5()
self.arm.start()
self.arm.init()
self.cam = ToolCamera(host='127.0.0.1')
self.cam.start()
time.sleep(2)
self.thread1=threading.Thread(target=self.show)
self.thread1.start()
self.pose_data=[]
self.image_data=[]
self.arm.start_drag()
def show(self):
while True:
self.rgb, self.depth, intrinsics = self.cam.get_latest_frame()
# print("cv:",self.rgb)
cv2.imshow("1111",self.rgb)
cv2.waitKey(1)
time.sleep(0.2)
def add_data(self):
angle=self.arm.getAngel()
self.pose_data=self.pose_data.append(angle)
print(angle)
def save_data(self):
data=np.array(self.pose_data)
np.savetxt('pose.txt', data ,fmt='%.5f')
if __name__ == "__main__":
save_directory = '/home/jsfb/jsfb_ws/global_config/captured_images'
if not os.path.exists(save_directory):
os.makedirs(save_directory)
sele=Getpose()
key = cv2.waitKey(1) & 0xFF
while True:
i=1
if key == ord('s'):
img_path = f'photo{i}.png'
filename = os.path.join(save_directory, img_path)
cv2.imwrite(filename, sele.rgb) # 保存照片
sele.add_data()
filename2 = os.path.join(save_directory, f'pose.txt')
np.savetxt(filename2, sele.pose_data)
# pose = increase_dof(poselist[index])
i += 1
# 按下'q'键退出循环
elif key == ord('q'):
sele.arm.disableRobot()
break

0
Massage/controller.service Executable file → Normal file
View File

0
Massage/test_manual.py Executable file → Normal file
View File

0
Restart_Speaker.py Executable file → Normal file
View File

0
clear_pyc.sh Executable file → Normal file
View File

View File

@ -1,7 +0,0 @@
from scipy.spatial.transform import Rotation as R
import numpy as np
arm_orientation_set0 = np.array([-180,-30,0])
b_rotation_s_set0 = R.from_euler('xyz',arm_orientation_set0,degrees=True).as_matrix()
tcp_offset = b_rotation_s_set0 @ np.array([0,0,154.071])
print(tcp_offset)

0
py2json.py Executable file → Normal file
View File

0
restart_language.sh Executable file → Normal file
View File

0
版本说明.txt Executable file → Normal file
View File